Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119734, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38642724

RESUMEN

Copper (Cu) dyshomeostasis has been linked to obesity and related morbidities and also to aging. Cu levels are higher in older or obese individuals, and adipose tissue (AT) Cu levels correlate with body mass index. Aging and obesity induce similar AT functional and structural changes, including an accumulation of senescent cells. To study the effect of Cu-mediated stress-induced premature senescent (Cu-SIPS) on preadipocytes, 3T3-L1 cell line was exposed to a subcytotoxic concentration of copper sulfate. After Cu treatment, preadipocytes acquired typical senescence characteristics including diminished cell proliferation, cell and nuclei enlargement and increased lysosomal mass (higher Lamp2 expression and a slight increased number of cells positive for ß-galactosidase associated with senescence (SA-ß-Gal)). Cell cycle arrest was due to upregulation of p16Ink4aInk4a and p21Waf1/Cip1. Accordingly, protein levels of the proliferation marker KI67 were reduced. Cu-SIPS relates with oxidative stress and, in this context, an increase of SOD1 and HO-1 expression was detected in Cu-treated cells. The mRNA expression of senescence-associated secretory phenotype factors, such as Mmp3, Il-6 and Tnf-α, increased in Cu-SIPS 3T3-L1 cells but no effect was observed on the expression of heterochromatin-associated protein 1(HP1). Although the downregulation of Lamin B1 expression is considered a hallmark of senescence, Cu-SIPS cells presented higher levels of Lamin B1. The dysregulation of nuclear lamina was accompanied by an increase of nuclear blebbing, but not of micronuclei number. To conclude, a Cu-SIPS model in 3T3-L1 preadipocytes is here described, which may be an asset to the study of AT dysregulation observed in obesity and aging.

2.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38542525

RESUMEN

Among the many lysosomal storage disorders (LSDs) that would benefit from the establishment of novel cell models, either patient-derived or genetically engineered, is mucopolysaccharidosis type II (MPS II). Here, we present our results on the establishment and characterization of two MPS II patient-derived stem cell line(s) from deciduous baby teeth. To the best of our knowledge, this is the first time a stem cell population has been isolated from LSD patient samples obtained from the dental pulp. Taking into account our results on the molecular and biochemical characterization of those cells and the fact that they exhibit visible and measurable disease phenotypes, we consider these cells may qualify as a valuable disease model, which may be useful for both pathophysiological assessments and in vitro screenings. Ultimately, we believe that patient-derived dental pulp stem cells (DPSCs), particularly those isolated from human exfoliated deciduous teeth (SHEDs), may represent a feasible alternative to induced pluripotent stem cells (iPSCs) in many labs with standard cell culture conditions and limited (human and economic) resources.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Mucopolisacaridosis II , Humanos , Células Madre , Línea Celular , Diente Primario , Lisosomas , Pulpa Dental , Diferenciación Celular/fisiología , Proliferación Celular
3.
Artículo en Inglés | MEDLINE | ID: mdl-37937567

RESUMEN

INTRODUCTION: When it comes to disease modeling, countless models are available for Lysosomal Storage Diseases (LSD). Historically, two major approaches are well-established: in vitro assessments are performed in patient fibroblasts, while in vivo pre-clinical studies are performed in mouse models. Still, both platforms have a series of drawbacks. Thus, we implemented two alternative and innovative protocols to mimic a particular sub-group of LSDs, the Mucopolysaccharidoses both in vitro and in vivo. METHODS: The first one relies on a non-invasive approach using dental pulp stem cells from deciduous teeth (SHEDs). SHEDs are multipotent neuronal precursors that can easily be collected. The second uses a state-of-the-art gene editing technology (CRISPR/Cas9) to generate zebrafish disease models. RESULTS: Even though this is an ongoing project, we have already established and characterized two MPS II and one MPS VI SHED cell models. These cells self-maintain through several passages and can give rise to a variety of cells including neurons. Furthermore, all MPS-associated sub-cellular phenotypes we have assessed so far are easily observable in these cells. Regarding our zebrafish models, we have successfully knocked down both naglu and hgsnat and the first results we got from the behavioral analysis are promising ones, as we can observe altered activity and sleep patterns in the genetically modified fish. For this particular approach we chose MPS III forms as our target disorders, since their neurological features (hyperactivity, seizures and motor impairment) and lifespan decrease would be easily recognizable in zebrafish. CONCLUSION: Now that these methods are well-established in our lab, their potential is immense. On one hand, the newly developed models will be of ultimate value to understand the mechanisms underlying MPS sub-cellular pathology, which have to be further elucidated. On the other hand, they will constitute an optimal platform for drug testing in house. Also noteworthy, our models will be published as lab resources and made available for the whole LSD community.

4.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834063

RESUMEN

Splicing of pre-mRNA is a crucial regulatory stage in the pathway of gene expression. The majority of human genes that encode proteins undergo alternative pre-mRNA splicing and mutations that affect splicing are more prevalent than previously thought. Targeting aberrant RNA(s) may thus provide an opportunity to correct faulty splicing and potentially treat numerous genetic disorders. To that purpose, the use of engineered U1 snRNA (either modified U1 snRNAs or exon-specific U1s-ExSpeU1s) has been applied as a potentially therapeutic strategy to correct splicing mutations, particularly those affecting the 5' splice-site (5'ss). Here we review and summarize a vast panoply of studies that used either modified U1 snRNAs or ExSpeU1s to mediate gene therapeutic correction of splicing defects underlying a considerable number of genetic diseases. We also focus on the pre-clinical validation of these therapeutic approaches both in vitro and in vivo, and summarize the main obstacles that need to be overcome to allow for their successful translation to clinic practice in the future.


Asunto(s)
Precursores del ARN , Empalme del ARN , Humanos , Precursores del ARN/metabolismo , Sitios de Empalme de ARN , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Mutación , Empalme Alternativo
5.
Biomedicines ; 11(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37189853

RESUMEN

Despite extensive research, the links between the accumulation of glycosaminoglycans (GAGs) and the clinical features seen in patients suffering from various forms of mucopolysaccharidoses (MPSs) have yet to be further elucidated. This is particularly true for the neuropathology of these disorders; the neurological symptoms are currently incurable, even in the cases where a disease-specific therapeutic approach does exist. One of the best ways to get insights on the molecular mechanisms driving that pathogenesis is the analysis of patient-derived cells. Yet, not every patient-derived cell recapitulates relevant disease features. For the neuronopathic forms of MPSs, for example, this is particularly evident because of the obvious inability to access live neurons. This scenario changed significantly with the advent of induced pluripotent stem cell (iPSC) technologies. From then on, a series of differentiation protocols to generate neurons from iPSC was developed and extensively used for disease modeling. Currently, human iPSC and iPSC-derived cell models have been generated for several MPSs and numerous lessons were learnt from their analysis. Here we review most of those studies, not only listing the currently available MPS iPSC lines and their derived models, but also summarizing how they were generated and the major information different groups have gathered from their analyses. Finally, and taking into account that iPSC generation is a laborious/expensive protocol that holds significant limitations, we also hypothesize on a tempting alternative to establish MPS patient-derived neuronal cells in a much more expedite way, by taking advantage of the existence of a population of multipotent stem cells in human dental pulp to establish mixed neuronal and glial cultures.

6.
Life (Basel) ; 12(5)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35629276

RESUMEN

Over recent decades, the many functions of RNA have become more evident. This molecule has been recognized not only as a carrier of genetic information, but also as a specific and essential regulator of gene expression. Different RNA species have been identified and novel and exciting roles have been unveiled. Quite remarkably, this explosion of novel RNA classes has increased the possibility for new therapeutic strategies that tap into RNA biology. Most of these drugs use nucleic acid analogues and take advantage of complementary base pairing to either mimic or antagonize the function of RNAs. Among the most successful RNA-based drugs are those that act at the pre-mRNA level to modulate or correct aberrant splicing patterns, which are caused by specific pathogenic variants. This approach is particularly tempting for monogenic disorders with associated splicing defects, especially when they are highly frequent among affected patients worldwide or within a specific population. With more than 600 mutations that cause disease affecting the pre-mRNA splicing process, we consider lysosomal storage diseases (LSDs) to be perfect candidates for this type of approach. Here, we introduce the overall rationale and general mechanisms of splicing modulation approaches and highlight the currently marketed formulations, which have been developed for non-lysosomal genetic disorders. We also extensively reviewed the existing preclinical studies on the potential of this sort of therapeutic strategy to recover aberrant splicing and increase enzyme activity in our diseases of interest: the LSDs. Special attention was paid to a particular subgroup of LSDs: the mucopolysaccharidoses (MPSs). By doing this, we hoped to unveil the unique therapeutic potential of the use of this sort of approach for LSDs as a whole.

7.
Methods Mol Biol ; 2434: 89-102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213011

RESUMEN

Mutations affecting constitutive splice donor sites (5'ss) are among the most frequent genetic defects that disrupt the normal splicing process. Pre-mRNA splicing requires the correct identification of a number of cis-acting elements in an ordered fashion. By disrupting the complementarity of the 5'ss with the endogenous small nuclear RNA U1 (U1 snRNA), the key component of the spliceosomal U1 ribonucleoprotein, 5'ss mutations may result in exon skipping, intron retention or activation of cryptic splice sites. Engineered modification of the U1 snRNA seemed to be a logical method to overcome the effect of those mutations. In fact, over the last years, a number of in vitro studies on the use of those modified U1 snRNAs to correct a variety of splicing defects have demonstrated the feasibility of this approach. Furthermore, recent reports on its applicability in vivo are adding up to the principle that engineered modification of U1 snRNAs represents a valuable approach and prompting further studies to demonstrate the clinical translatability of this strategy.Here, we outline the design and generation of U1 snRNAs with different degrees of complementarity to mutated 5'ss. Using the HGSNAT gene as an example, we describe the methods for a proper evaluation of their efficacy in vitro, taking advantage of our experience to share a number of tips on how to design U1 snRNA molecules for splicing rescue.


Asunto(s)
Empalme del ARN , ARN Nuclear Pequeño , Empalme Alternativo , Exones , Mutación , Sitios de Empalme de ARN/genética , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo
8.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785133

RESUMEN

More than two thirds of Lysosomal Storage Diseases (LSDs) present central nervous system involvement. Nevertheless, only one of the currently approved therapies has an impact on neuropathology. Therefore, alternative approaches are under development, either addressing the underlying enzymatic defect or its downstream consequences. Also under study is the possibility to block substrate accumulation upstream, by promoting a decrease of its synthesis. This concept is known as substrate reduction therapy and may be triggered by several molecules, such as small interfering RNAs (siRNAs). siRNAs promote RNA interference, a naturally occurring sequence-specific post-transcriptional gene-silencing mechanism, and may target virtually any gene of interest, inhibiting its expression. Still, naked siRNAs have limited cellular uptake, low biological stability, and unfavorable pharmacokinetics. Thus, their translation into clinics requires proper delivery methods. One promising platform is a special class of liposomes called stable nucleic acid lipid particles (SNALPs), which are characterized by high cargo encapsulation efficiency and may be engineered to promote targeted delivery to specific receptors. Here, we review the concept of SNALPs, presenting a series of examples on their efficacy as siRNA nanodelivery systems. By doing so, we hope to unveil the therapeutic potential of these nanosystems for targeted brain delivery of siRNAs in LSDs.


Asunto(s)
Enfermedades del Sistema Nervioso Central/complicaciones , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Liposomas/química , Enfermedades por Almacenamiento Lisosomal/complicaciones , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico , Nanopartículas/química , ARN Interferente Pequeño/administración & dosificación , Animales , Encéfalo/metabolismo , Enfermedades del Sistema Nervioso Central/genética , Enfermedades del Sistema Nervioso Central/metabolismo , Estabilidad de Medicamentos , Humanos , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/metabolismo , Interferencia de ARN , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo
9.
Hum Gene Ther ; 31(13-14): 775-783, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32283951

RESUMEN

Lysosomal storage disorders (LSDs) are a group of rare inherited metabolic diseases caused by the malfunction of the lysosomal system, which results in the accumulation of undergraded substrates inside the lysosomes and leads to severe and progressive pathology. Despite there currently being a broad understanding of the molecular defects behind LSDs, curative therapies have been approved for only few of these diseases, whereas existing treatments are still mostly symptomatic with several limitations. Mucolipidosis type II alpha/beta (ML II) is one of most severe LSDs, which is caused by the total deficiency of the GlcNAc-1-phosphotransferase, a key enzyme for the formation of specific targeting signals on lysosomal hydrolases to lysosomes. GlcNAc-1-phosphotransferase is a multimeric enzyme complex encoded by two genes: GNPTAB and GNPTG. One of the most frequent ML II causal mutation is a dinucleotide deletion on exon 19 of GNPTAB (c.3503_3504del) that leads to the generation of a truncated protein, loss of GlcNAc-1-phosphotransferase activity, and missorting of multiple lysosomal enzymes. Presently, there is no therapy available for ML II. In this study, we explored the possibility of an innovative therapeutic strategy for ML II based on the use of antisense oligonucleotides (AOs) capable to induce the skipping of GNPTAB exon 19 harboring the most common disease-causing mutation, c.3503_3504del. The approach confirmed the ability of specific AOs for RNA splicing modulation, thus paving the way for future studies on the therapeutic potential of this strategy.


Asunto(s)
Exones , Fibroblastos/metabolismo , Mucolipidosis/terapia , Mutación , Oligonucleótidos Antisentido/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/antagonistas & inhibidores , Secuencia de Aminoácidos , Estudios de Casos y Controles , Humanos , Mucolipidosis/genética , Mucolipidosis/patología , Fenotipo , Homología de Secuencia , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
10.
Diagnostics (Basel) ; 10(2)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31973102

RESUMEN

Here, we present the molecular diagnosis of a patient with a general clinical suspicion of Mucopolysaccharidosis, highlighting the different tools used to perform its molecular characterization. In order to decrease the turnaround time for the final report and contribute to reduce the "diagnostic odyssey", which frequently afflicts affected families, the proband's sample was simultaneously screened for mutations in a number of lysosomal function-related genes with targeted next-generation sequencing (NGS) protocol. After variant calling, the most probable cause for disease was a novel ARSB intronic variant, c.1213+5G>T [IVS6+5G>T], detected in homozygosity. In general, homozygous or compound heterozygous mutations in the ARSB gene, underlie MPS type VI or Maroteaux-Lamy syndrome. Still, even though the novel c.1213+5G>T variant was easy to detect by both NGS and Sanger sequencing, only through indirect studies and functional analyses could we present proof of principle on its pathogenicity. Globally, this case reminds us that whenever a novel variant is detected, its pathogenicity must be carefully assessed before a definitive diagnosis is established, while highlighting alternative approaches that may be used to assess its effect in the absence RNA/cDNA sample(s) from the proband. This is particularly relevant for intronic variants such as the one here reported. Special attention will be given to the use of reporter minigene systems, which may be constructed/designed to dissect the effect of this sort of alterations, providing an insight into their consequences over the normal pre-mRNA splicing process of the affected gene.

11.
Adv Exp Med Biol ; 1157: 133-177, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31342441

RESUMEN

In recent years, the RNA molecule became one of the most promising targets for therapeutic intervention. Currently, a large number of RNA-based therapeutics are being investigated both at the basic research level and in late-stage clinical trials. Some of them are even already approved for treatment. RNA-based approaches can act at pre-mRNA level (by splicing modulation/correction using antisense oligonucleotides or U1snRNA vectors), at mRNA level (inhibiting gene expression by siRNAs and antisense oligonucleotides) or at DNA level (by editing mutated sequences through the use of CRISPR/Cas). Other RNA approaches include the delivery of in vitro transcribed (IVT) mRNA or the use of oligonucleotides aptamers. Here we review these approaches and their translation into clinics trying to give a brief overview also on the difficulties to its application as well as the research that is being done to overcome them.


Asunto(s)
Terapia Genética , Oligonucleótidos Antisentido , Oligonucleótidos , Terapia Genética/tendencias , Humanos , Empalme del ARN , ARN Mensajero , ARN Interferente Pequeño
12.
Genes (Basel) ; 9(9)2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30208654

RESUMEN

Unverricht-Lundborg disease (ULD) is a common form of progressive myoclonic epilepsy caused by mutations in the cystatin B gene (CSTB) that encodes an inhibitor of several lysosomal cathepsins. Presently, only pharmacological treatment and psychosocial support are available for ULD patients. To overcome the pathogenic effect of the ULD splicing mutation c.66G>A (exon 1), we investigated whether an antisense oligonucleotide therapeutic strategy could correct the defect in patient cells. A specific locked nucleic acid (LNA) antisense oligonucleotide was designed to block a cryptic 5'ss in intron 1. Overall, this approach allowed the restoration of the normal splicing pattern. Furthermore, the recovery was both sequence and dose-specific. In general, this work provides a proof of principle on the correction of a CSTB gene defect causing ULD through a mutation-specific antisense therapy. It adds evidence to the feasibility of this approach, joining the many studies that are paving the way for translating antisense technology into the clinical practice. The insights detailed herein make mutation-based therapy a clear candidate for personalized treatment of ULD patients, encouraging similar investigations into other genetic diseases.

13.
Oxid Med Cell Longev ; 2017: 9172085, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29147466

RESUMEN

[This corrects the article DOI: 10.1155/2017/3793817.].

14.
J Ovarian Res ; 10(1): 44, 2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28701210

RESUMEN

As the human ovarian follicle enlarges in the course of a regular cycle or following controlled ovarian stimulation, the changes in its structure reveal the oocyte environment composed of cumulus oophorus cells and the follicular fluid (FF).In contrast to the dynamic nature of cells, the fluid compartment appears as a reservoir rich in biomolecules. In some aspects, it is similar to the plasma, but it also exhibits differences that likely relate to its specific localization around the oocyte. The chemical composition indicates that the follicular fluid is able to detect and buffer excessive amounts of reactive oxygen species, employing a variety of antioxidants, some of them components of the intracellular milieu.An important part is played by albumin through specific cysteine residues. But the fluid contains other molecules whose cysteine residues may be involved in sensing and buffering the local oxidative conditions. How these molecules are recruited and regulated to intervene such process is unknown but it is a critical issue in reproduction.In fact, important proteins in the FF, that regulate follicle growth and oocyte quality, exhibit cysteine residues at specific points, whose untoward oxidation would result in functional loss. Therefore, preservation of controlled oxidative conditions in the FF is a requirement for the fine-tuned oocyte maturation process. In contrast, its disturbance enhances the susceptibility to the establishment of reproductive disorders that would require the intervention of reproductive medicine technology.


Asunto(s)
Líquido Folicular/metabolismo , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/metabolismo , Oxidación-Reducción , Animales , Antioxidantes/metabolismo , Microambiente Celular , Susceptibilidad a Enfermedades , Femenino , Humanos , Oocitos/metabolismo , Oogénesis , Oxidantes/metabolismo , Estrés Oxidativo
15.
Oxid Med Cell Longev ; 2017: 3793817, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28280523

RESUMEN

Copper sulfate-induced premature senescence (CuSO4-SIPS) consistently mimetized molecular mechanisms of replicative senescence, particularly at the endoplasmic reticulum proteostasis level. In fact, disruption of protein homeostasis has been associated to age-related cell/tissue dysfunction and human disorders susceptibility. Resveratrol is a polyphenolic compound with proved antiaging properties under particular conditions. In this setting, we aimed to evaluate resveratrol ability to attenuate cellular senescence induction and to unravel related molecular mechanisms. Using CuSO4-SIPS WI-38 fibroblasts, resveratrol is shown to attenuate typical senescence alterations on cell morphology, senescence-associated beta-galactosidase activity, and cell proliferation. The mechanisms implicated in this antisenescence effect seem to be independent of senescence-associated genes and proteins regulation but are reliant on cellular proteostasis improvement. In fact, resveratrol supplementation restores copper-induced increased protein content, attenuates BiP level, and reduces carbonylated and polyubiquitinated proteins by autophagy induction. Our data provide compelling evidence for the beneficial effects of resveratrol by mitigating CuSO4-SIPS stressful consequences by the modulation of protein quality control systems. These findings highlight the importance of a balanced cellular proteostasis and add further knowledge on molecular mechanisms mediating resveratrol antisenescence effects. Moreover, they contribute to identifying specific molecular targets whose modulation will prevent age-associated cell dysfunction and improve human healthspan.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Cobre/toxicidad , Proteínas/metabolismo , Estilbenos/farmacología , Autofagia/efectos de los fármacos , Línea Celular , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Resveratrol , Sirtuina 1/metabolismo , Regulación hacia Arriba/efectos de los fármacos
16.
Diseases ; 4(4)2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-28933412

RESUMEN

Lysosomal storage diseases are a group of rare genetic disorders characterized by the accumulation of storage molecules in late endosomes/lysosomes. Most of them result from mutations in genes encoding for the catabolic enzymes that ensure intralysosomal digestion. Conventional therapeutic options include enzyme replacement therapy, an approach targeting the functional loss of the enzyme by injection of a recombinant one. Even though this is successful for some diseases, it is mostly effective for peripheral manifestations and has no impact on neuropathology. The development of alternative therapeutic approaches is, therefore, mandatory, and striking innovations including the clinical development of pharmacological chaperones and gene therapy are currently under evaluation. Most of them, however, have the same underlying rationale: an attempt to provide or enhance the activity of the missing enzyme to re-establish substrate metabolism to a level that is consistent with a lack of progression and/or return to health. Here, we will focus on the one approach which has a different underlying principle: substrate reduction therapy (SRT), whose uniqueness relies on the fact that it acts upstream of the enzymatic defect, decreasing storage by downregulating its biosynthetic pathway. Special attention will be given to the most recent advances in the field, introducing the concept of genetic SRT (gSRT), which is based on the use of RNA-degrading technologies (RNA interference and single stranded antisense oligonucleotides) to promote efficient substrate reduction by decreasing its synthesis rate.

17.
Data Brief ; 5: 810-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26693516

RESUMEN

This data article contains insights into the methodology used for the analysis of three exonic mutations altering the splicing of the IDS gene: c.241C>T, c.257C>T and c.1122C>T. We have performed splicing assays for the wild-type and mutant minigenes corresponding to these substitutions. In addition, bioinformatic predictions of splicing regulatory sequence elements as well as RNA interference and overexpression experiments were conducted. The interpretation of these data and further extensive experiments into the analysis of these three mutations and also into the methodology applied to correct one of them can be found in "Functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II" Matos et al. (2015) [1].

18.
Biochim Biophys Acta ; 1852(12): 2712-21, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26407519

RESUMEN

Mucopolysaccharidosis II is a lysosomal storage disorder caused by mutations in the IDS gene, including exonic alterations associated with aberrant splicing. In the present work, cell-based splicing assays were performed to study the effects of two splicing mutations in exon 3 of IDS, i.e., c.241C>T and c.257C>T, whose presence activates a cryptic splice site in exon 3 and one in exon 8, i.e., c.1122C>T that despite being a synonymous mutation is responsible for the creation of a new splice site in exon 8 leading to a transcript shorter than usual. Mutant minigene analysis and overexpression assays revealed that SRSF2 and hnRNP E1 might be involved in the use and repression of the constitutive 3' splice site of exon 3 respectively. For the c.1122C>T the use of antisense therapy to correct the splicing defect was explored, but transfection of patient fibroblasts with antisense morpholino oligonucleotides (n=3) and a locked nucleic acid failed to abolish the abnormal transcript; indeed, it resulted in the appearance of yet another aberrant splicing product. Interestingly, the oligonucleotides transfection in control fibroblasts led to the appearance of the aberrant transcript observed in patients' cells after treatment, which shows that the oligonucleotides are masking an important cis-acting element for 5' splice site regulation of exon 8. These results highlight the importance of functional studies for understanding the pathogenic consequences of mis-splicing and highlight the difficulty in developing antisense therapies involving gene regions under complex splicing regulation.

19.
Biol Reprod ; 93(3): 56, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26178715

RESUMEN

The number of women who delay their first childbirth is increasing. This demographic shift is an important health issue because advanced maternal age is a risk factor for reproductive capacity loss and the occurrence of placental bed disorders that may lead to placenta abruption, preeclampsia, and placenta insufficiency. A redox imbalance status, resulting from the enhanced production of reactive oxygen species or their deficient neutralization, is proposed to occur in this setting. Thus, uterine redox status was evaluated in young (8- to 12-wk-old) and reproductively aged (38- to 42-wk-old) mice. In addition, it was hypothesized that specific dietary antioxidant supplementation would restore the balance and improve the reproductive outcome of aging female mice. To test this hypothesis, two different antioxidants, the nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor apocynin and the superoxide dismutase mimetic 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL), were added to the drinking water of female mice prior to and during pregnancy. Compared to younger females, uteri from reproductively aged nonpregnant mice exhibited areas of endometrial cystic dilation, increased level of NOX1 expression, and enhanced protein carbonylation, especially in the apical surface of the luminal epithelium. Both antioxidants decreased protein carbonylation level in the uterus of reproductively aged mice. When reproductively aged females became pregnant, the litter size was smaller and fetuses were heavier. The change was accompanied by a significant decrease in decidua thickness. Provision of apocynin significantly increased litter size and restored decidua thickness. Reproductively aged mice provided with TEMPOL did not evidence such benefits, but whereas apocynin normalized fetal birth weight, TEMPOL further increased it. These findings emphasize that uterine redox balance is important for reproductive success and suggest that age-related redox imbalance might be compensated by specific antioxidant supplementation.


Asunto(s)
Envejecimiento/fisiología , Antioxidantes/farmacología , Placenta/anatomía & histología , Placenta/efectos de los fármacos , Reproducción/efectos de los fármacos , Acetofenonas/farmacología , Animales , Óxidos N-Cíclicos/farmacología , Decidua/efectos de los fármacos , Femenino , Feto/anatomía & histología , Tamaño de la Camada , Ratones , Ratones Endogámicos C57BL , NADH NADPH Oxidorreductasas/biosíntesis , NADH NADPH Oxidorreductasas/genética , NADPH Oxidasa 1 , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Embarazo , Carbonilación Proteica/efectos de los fármacos , Marcadores de Spin , Superóxido Dismutasa/metabolismo , Útero/efectos de los fármacos , Útero/metabolismo
20.
PLoS One ; 10(3): e0119103, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25742286

RESUMEN

BACKGROUND: Cyclic endometrial neoangiogenesis contributes to changes in local vascular patterns and is amenable to non-invasive assessment with Doppler sonography. We hypothesize that the uterine artery (UtA) impedance, measured by its pulsatility index (PI), exhibits a regular pattern during the normal menstrual cycle. Therefore, the main study objective was to derive normative new day-cycle-based reference ranges for the UtA-PI during the entire cycle from days 1 to 34 according to the isolated time effect and potential confounders such as age and parity. METHODS: From January 2009 to December 2012, a cross-sectional study of 1,821 healthy women undergoing routine gynaecological ultrasound was performed. The Doppler flow of the right and left UtA-PI was studied transvaginally by colour and pulsed Doppler imaging. The mean right and left values and the presence or absence of a bilateral protodiastolic notch were recorded. Reference intervals for the PI according to the cycle day were generated by classical linear regression. RESULTS: The majority of patients (97.5%) presented unilateral or bilateral UtA notches. The crude 5th, 50th, and 95th reference percentile curves of the UtA-PI at 1-34 days of the normal menstrual cycle were derived. In all curves, a progressive significant decrease occurred during the first 13 days, followed by an increase and recovery in the UtA-PI. The adjusted 5th, 50th, and 95th reference percentile curves for the effects of age and parity were also obtained. These two conditions generated an approximately identical UtA-PI pattern during the cycle, except with small but significant reductions at the temporal extremes. CONCLUSIONS: The median, 5th, and the 95th percentiles of the UtA-PI decrease during the first third of the menstrual cycle and recover to their initial values during the last two thirds of the cycle. The rates of decrease and recovery depend significantly on age and parity.


Asunto(s)
Ciclo Menstrual , Arteria Uterina/fisiología , Adolescente , Adulto , Estudios Transversales , Femenino , Humanos , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...